Individualized Prospective Prediction of Opioid Use Disorder

Original research
par
Liu, Yang S. et al

Date de publication

2022

Géographie

Canada

Langue de la ressource

English

Texte disponible en version intégrale

Oui

Open Access / OK to Reproduce

Non

Évalué par des pairs

Yes

L’objectif

In the current study, we aimed to develop and prospectively validate an ML model that could predict individual OUD cases based on representative large-scale health data.

Constatations/points à retenir

With 6409 OUD cases in 2019, our model prospectively predicted OUD cases at a high accuracy (balanced accuracy, 86%, sensitivity, 93%; specificity 79%). In accord with prior findings, the top risk factors for OUD in this model were opioid use indicators and a history of other substance use disorders.

La conception ou méthodologie de recherche

Machine-learning model trained on a cross-linked Canadian administrative health data set

Mots clés

About PWUD
Digital health