Date de publication
Géographie
Langue de la ressource
Texte disponible en version intégrale
Open Access / OK to Reproduce
Évalué par des pairs
L’objectif
In the current study, we aimed to develop and prospectively validate an ML model that could predict individual OUD cases based on representative large-scale health data.
Constatations/points à retenir
With 6409 OUD cases in 2019, our model prospectively predicted OUD cases at a high accuracy (balanced accuracy, 86%, sensitivity, 93%; specificity 79%). In accord with prior findings, the top risk factors for OUD in this model were opioid use indicators and a history of other substance use disorders.
La conception ou méthodologie de recherche
Machine-learning model trained on a cross-linked Canadian administrative health data set